Advantages of a Mechanistic Codon Substitution Model for Evolutionary Analysis of Protein-Coding Sequences

نویسنده

  • Sanzo Miyazawa
چکیده

BACKGROUND A mechanistic codon substitution model, in which each codon substitution rate is proportional to the product of a codon mutation rate and the average fixation probability depending on the type of amino acid replacement, has advantages over nucleotide, amino acid, and empirical codon substitution models in evolutionary analysis of protein-coding sequences. It can approximate a wide range of codon substitution processes. If no selection pressure on amino acids is taken into account, it will become equivalent to a nucleotide substitution model. If mutation rates are assumed not to depend on the codon type, then it will become essentially equivalent to an amino acid substitution model. Mutation at the nucleotide level and selection at the amino acid level can be separately evaluated. RESULTS The present scheme for single nucleotide mutations is equivalent to the general time-reversible model, but multiple nucleotide changes in infinitesimal time are allowed. Selective constraints on the respective types of amino acid replacements are tailored to each gene in a linear function of a given estimate of selective constraints. Their good estimates are those calculated by maximizing the respective likelihoods of empirical amino acid or codon substitution frequency matrices. Akaike and Bayesian information criteria indicate that the present model performs far better than the other substitution models for all five phylogenetic trees of highly-divergent to highly-homologous sequences of chloroplast, mitochondrial, and nuclear genes. It is also shown that multiple nucleotide changes in infinitesimal time are significant in long branches, although they may be caused by compensatory substitutions or other mechanisms. The variation of selective constraint over sites fits the datasets significantly better than variable mutation rates, except for 10 slow-evolving nuclear genes of 10 mammals. An critical finding for phylogenetic analysis is that assuming variable mutation rates over sites lead to the overestimation of branch lengths.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Solvent Effect on CUA Codon Mutation: NMR Shielding Study

P53 is one of the gene that has important role in human cell cycle and in the human cancers too.Models of codon substitution make it possible to separate mutational biases in the DNA fromselective constraints on the protein, and offer a great advantage over amino acid models forunderstanding the evolutionary process of proteins and protein-coding DNA sequences. In thiswork, we investigated abou...

متن کامل

Statistical comparison of nucleotide, amino acid, and codon substitution models for evolutionary analysis of protein-coding sequences.

Statistical models for the evolution of molecular sequences play an important role in the study of evolutionary processes. For the evolutionary analysis of protein-coding sequences, 3 types of evolutionary models are available: 1) nucleotide, 2) amino acid, and 3) codon substitution models. Selecting appropriate models can greatly improve the estimation of phylogenies and divergence times and t...

متن کامل

Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences.

Although phylogenetic inference of protein-coding sequences continues to dominate the literature, few analyses incorporate evolutionary models that consider the genetic code. This problem is exacerbated by the exclusion of codon-based models from commonly employed model selection techniques, presumably due to the computational cost associated with codon models. We investigated an efficient alte...

متن کامل

An empirical examination of the utility of codon-substitution models in phylogeny reconstruction.

Models of codon substitution have been commonly used to compare protein-coding DNA sequences and are particularly effective in detecting signals of natural selection acting on the protein. Their utility in reconstructing molecular phylogenies and in dating species divergences has not been explored. Codon models naturally accommodate synonymous and nonsynonymous substitutions, which occur at ver...

متن کامل

A combined empirical and mechanistic codon model.

The evolutionary selection forces acting on a protein are commonly inferred using evolutionary codon models by contrasting the rate of synonymous to nonsynonymous substitutions. Most widely used models are based on theoretical assumptions and ignore the empirical observation that distinct amino acids differ in their replacement rates. In this paper, we develop a general method that allows assim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011